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Abstract

The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and
optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney
HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to
700 °C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate
these propertiesin realistic disk shapes. The objective of the present study was to assess the
microstructural characteristics of these ME3 disks at two consistent locations, in order to enable
estimation of the variationsin microstructure across each disk and across several disks of this advanced
aloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned,
machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA
Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney
Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and
rim were evaluated from these disks. The major and minor phases were identified and quantified using
transmission electron microscopy (TEM). Particular attention was directed to they’ precipitates, which
along with grain size can predominantly control the mechanical properties of superalloy disks.

I ntroduction

The advanced powder metallurgy disk alloy ME3 was designed in the NASA/General Electric/
Pratt & Whitney High Speed Research/Enabling Propulsion Materials (HSR/EPM) disk program to have
extended durability at 600 to 700 °C in large disks. This was achieved by designing a disk aloy with
moderately high y' precipitate content and refractory element levels optimized with rapid cooling
supersolvus heat treatments to produce balanced monotonic, cyclic, and time-dependent mechanical
properties. The resulting baseline alloy with optimized processing, and supersolvus heat treatment has
shown extended durability, combined with robust processing and manufacturing characteristics (refs. 1
and 2). It iswell known that grain size strongly influences the mechanical properties of disk superalloys
(ref. 3). Thisis clearly established for powder metallurgy (PM) disk superalloys, where grain size and
uniformity can be well controlled through careful design of the consolidation, extrusion, forging, and heat
treatment processing steps (ref. 4). Grain sizes as small as 5 to 10 um diameter can be commonly
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achieved in superalloy disks by using solution heat treatments bel ow the solvus of the y" phase, which
constrains grain growth. These “ subsolvus’ heat treatments can produce high tensile strength and fatigue
crack initiation resistance. Heat treatments above the y’ phase solvus (“ supersolvus’) dissolve al of the
precipitates, allowing grains to grow much larger. Generally speaking, increasing grain size can decrease
monotonic strength and fatigue crack initiation resistance, while increasing creep and dwell fatigue crack
growth resistances (refs. 5to 7).

It isaso well known that the content and size of strengthening y' phase precipitates al so influence the
mechanical properties of disk superalloys. Three general size ranges of y' phase precipitates are usually
observed in disk superalloys. Large 1 to 10 um diameter “primary” y' precipitates can be influenced by all
thermomechanical processing steps, but are ultimately controlled by the solution heat treatment
temperature and time. A subsolvus heat treatment allows some of these precipitates to survive and
constrain grain growth. A supersolvus heat treatment temperature can dissolve all of these precipitates.
Smaller 0.1 to 1.0 um “secondary” diameter y' precipitates nucleate and begin growing early during
guench from the solution heat treatment, generally at temperatures above about 900 °C. Secondary '
precipitate sizeis also influenced by solution heat treatment temperature, but is predominantly set by the
cooling rate and path from the solution heat treatment. During the quench from the solution heat treatment
temperature, multiple populations of secondary y' precipitates can nucleate, grow, and coarsen (ref. 8).
Finest “tertiary” y' precipitates less than 0.1 um in diameter subsequently nucleate and begin growing at
temperatures below about 900 °C, during the later part of the quench and subsequent stress relief and
aging heat treatments. Tertiary y' precipitate size isinfluenced by the cooling path of the quench from
solution heat treatment, and al so subsequent stress relief and aging heat treatment temperatures and times.

The coarse primary y' particles are not reported to provide much strengthening. Increasing content
and decreasing size of the secondary ' precipitates can strongly increase monotonic strength, fatigue
resistance, and creep resistance (refs. 3, and 9 to 11). The effects of tertiary y' phase content and size of on
mechanical properties are less dramatic, and can be alloy/property dependent.

A detailed characterization of grain sizes, as well as the size distributions and quantities of the
multiple possible populations of y' precipitates is therefore necessary to quantitatively relate processing
paths to the resulting microstructure, and then to relate the microstructure to the resulting mechanical
properties. The development of such quantitative relationships is key to improving the processing and
mechanical properties of existing disk alloys, and is also essential to reduce risk for introduction of newly
developed disk aloys such as ME3.

The objective of this study was to assess the detailed microstructural characteristics of the scaled-up
disk alloy ME3. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been
sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests
by NASA Glenn Research Center, in cooperation with General Electric Engine Company and
Pratt & Whitney Aircraft Engines. Microstructures of grip sections from atensile specimen in the bore
and a notched tensile specimen in the rim were evaluated from these disks. The major and minor phases
were identified and quantified. Particular attention was directed to the measurement of grain sizeand y’
precipitate size, both of which control the mechanical propertiesin disk superalloys.

Materials and Procedure

Eight scaled-up baseline ME3 disks were either subsolvus or supersolvus solution heat treated. Disk
identifications and processing steps are listed in table 1. Each disk had a maximum diameter of near
60 cm, a maximum thickness in the bore of near 10 cm, and a maximum thickness in the rim of near
5 cm. Quench rate and stressrelief heat treatment time were varied among these disks. The disks were
guenched using fan air cooling followed by oil quenching, with varied time sequence intervals. One of
two subseguent stress relief heat treatment times was applied, followed by afixed final aging heat
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treatment step. The grip sections of atensile specimen (T1) in the slow cooling bore location and a
notched tensile specimen (NT4) from a faster cooling rim location were evaluated from each disk, after
being tensile tested.

Pins of 3 mm diameter were extracted by electrodischarge machining parallel to the loading axis from
the grip of the selected tensile specimens. A low speed abrasive saw was used to cut slices about 0.5 mm
thick from each pin. The slices were mechanically polished down to about 140 to 150 um thickness, then
electrochemically thinned using a solution of 10 percent Perchloric acid, 90 percent Methanol mixture
cooled to —25 t0 —30 °C. Grain sizes were also later determined on metallographically prepared sections
of the same specimen grip sections, according to ASTM E-112 linear intercept procedures, using circular
grid overlays on 5 randomly selected images for each specimen.

Y precipitates were consistently imaged using <010> dark field reflections near the <001> zone axis.
Thiswas performed on grains selected with a <001> zone axis oriented |ess than 30° from the beam axis,
to avoid excessive foil tilting. At least 4 foils were surveyed from each specimen. Image analyses of the y’
precipitates were performed using SigmaScan™ software. Areafractions of primary and secondary y’
precipitates were measured by point counting, from metallographic sections and very thin regions of the
TEM fail, respectively. Areafractions of tertiary y' were estimated as the difference between the total v’
phase content and any measured primary/secondary phase contents. A minimum of 100 secondary and
100 tertiary y' precipitates were measured for size quantification in each specimen. Major and minor axis
lengths and area were directly measured by the software. Several shape parameters including aspect ratio,
feret diameter, compactness, and shape factor were then calculated asillustrated in figure 1. Maximum
and minimum values were tabulated, along with averages and standard deviations cal culated assuming a
single, normal distribution in each case. Frequency distributions of feret diameter were further analyzed
using Peakfit™ software, and the associated histograms and fitted curves were prepared, with the peak
valuesindicated for each curve in the figures.

Results and Discussion

General Microstructure

The grain sizes of specimens from each disk selected for detailed microstructural evaluations are
listed intable 1. Mean grain sizes of supersolvus heat treated specimens were comparable at ASTM 6.5 to
7.6 (23 to 34 um) and standard deviationsin ASTM number of 0.1 to 0.4. Subsolvus heat treated
specimens had comparable ASTM 11.9t0 12.1 (4.9 to 5.2 um) grain size and standard deviationsin
ASTM number of 0.1t0 0.3. As-large-as (ALA) grain sizes of supersolvus heat treated specimens were
comparable at ASTM 2.3 to 4, while subsolvus heat treated specimens had ASTM 7.3t0 8.5 ALA grain
sizes. Typical microstructures of specimens etched in Kallings reagent are shown in figures 2 to 4.
Although their grain sizes were roughly the same, bore specimens of supersolvus disks consistently had
dlightly coarser grain sizes and more irregular, serrated grain boundaries than rim specimens, as shown in
figure 3.

Thetotal y' phase content in ME3 was measured at an area fraction of 0.517 + 0.008. This was based
on point counting measurements from a sectioned specimen given avery slow quench time of 3 weeks
from the supersolvus heat treatment temperature to 870 °C, to alow al y' phase to precipitate and grow at
near equilibrium conditions. The resulting y' phase precipitates in this specimen were very large at 1 to
3 wm diameter. In the supersolvus heat treated disks, all observed y’ phase was in the form of “secondary”
precipitates of 0.1 to 0.6 um diameter taking up an area fraction of 0.49 to 0.52 and “tertiary” precipitates
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of 0.01 to 0.04 um diameter taking up an area fraction of 0.001 to 0.03. In the subsolvus heat treated
disks, un-dissolved “primary” y' phase took up an area fraction of 0.152 + 0.015, in the form of large
particles 0.8 to 5 um in diameter.

Minor phases were identified by surveying the general microstructure of multiple foils at low
magnifications, as shown in figures 5 to 11. Identified phases were then evaluated at high magnifications
using selected area electron diffraction patterns and qualitative energy dispersive x-ray analyses. The
observed minor phases were similar in supersolvus and subsolvus heat treated disks. Results for the
supersolvus disks are summarized in table 2, with minor phases compared separately for within grains and
at grain boundaries. MC carbides of 150 to 700 nm diameter were the predominant minor phase observed
within grains, accounting for 88 percent by number of the minor phases typically observed. Their
qualitative phase chemistry was (Ti,Ta,Nb,M0)C. Approximately 5 percent of the secondary particles
were M3B; borides ranging from 400 to 1000 nm in diameter. Their composition was determined to be
(Mo,Cr,W)3B,. About 5 percent of smaller ZrO, oxides and 2 percent of Al,O; oxides were also observed
with grains. At the grain boundaries, M»3Cg carbides predominated, having compositions of
(Cr,M0o,W)Cs. A small number of larger MC carbides a so resided there, and very sparse quantities of
(Mo,Cr,W)3B, borides, Al,O; oxides, and ZrO, oxides at the grain boundaries.

Detailed y ' Evaluations

Supersolvus heat treated disks—Typical secondary and tertiary y' microstructures observed within
grains are compared for the bore and rim specimens of each supersolvus heat treated disk in figure 12.
Histograms of y' size-frequency measurements are likewise compared in figures 13 and 14. Sizes, shape
parameters, and area fractions are summarized in tables 3 to 6. Visual inspection suggests the bore
specimens had larger sizes and possibly lower area fractions of secondary y' than the rim specimens. The
larger secondary y' precipitates in bore specimens often had multiple lobes extending out diagonally from
the {001} cube plane faces. The observation and description of such y’ precipitate growth has previously
been described (ref. 12). Bore specimens also appeared to have awider variation in secondary y' sizes
than in the rim specimens. This sometimes appeared due to the sectioning of the lobed tips for the larger
v precipitates. However, smaller isolated secondary ' precipitates appeared to also be present in the
microstructure. Rim specimens had a more uniform population of rounded cuboid y' precipitates, which
appeared smaller in size and had only very minor lobe growth at the cube corners. The tertiary y'
precipitates appeared similar in size and shape for all supersolvus heat treated specimens.

The results of quantitative image analyses of the secondary and tertiary ¥ within the grains of
supersolvus disk specimens are summarized in tables 3 to 6 and table 11. Feret diameters, which are
insensitive to minor precipitate shape differences, were used in these comparisons. The measured
averages of secondary y' major axis, minor axis, and feret diameter of the bore specimens varied with disk
guench rate. The slower quenched bore specimens from S100 and S101 disks had higher mean sizes than
the faster quenched bore specimens of W110 and H111 disks. The mean secondary y' precipitate sizes did
not strongly vary with the disk quench rate in the rim specimens. Overall, mean secondary y' feret
diameter was inversely correlated with relative cooling rate, figure 15. However, thisis an overly
simplified conclusion, asit will be shown that these specimens had bimodal secondary y' size
distributions. The bore specimens of all four supersolvus disks had higher compactness and lower shape
factors than the rim specimens, consistent with the presence of pronounced multi-lobed particlesin the
bores. Compactness and shape factor values for the rim specimens were between those expected for round
and cuboidal shaped secondary y'. No clear trend was observed between relative stress relief time and
secondary y' size, figure 15. Stepwise multiple linear regression of size versus relative cooling rate, stress
relief time, and their interaction term also confirmed that only the cooling rate had a statistically
significant effect.
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Histograms of feret diameter versus frequency are compared for secondary y' in figure 13 and tertiary
y" infigure 14. A wide variation of secondary y' sizesin bore specimensis clearly evident in the
histograms. Two size populations of secondary y' could be separated for each of the bore specimens, with
peak values differing by about afactor of 2 between the smaller sized “S1” population and the larger
sized “S2" population. As reflected in the 2X factor, the S1 population was made up in part by the
random sectioning of the large lobed particles through the outer diagonal lobes. These |obes did appear to
be nearly half the size of the main particle. However, the S1 popul ation was also made up in part by
isolated, small secondary y' precipitates. In comparing the bore specimens of the slower quenched, S100
and S101, disks with those of the faster quenched, W110 and H111, disks, it is apparent the S2 popul ation
predominated in the slower quenched disk cases, while the S1 population predominated in the faster
guenched disk cases. Thistrend is consistent with the results for the even faster cooled rim specimens
from each disk. Here, the S2 population was not observed at all, and the S1 population clearly
predominated. In the rim specimens, the size histograms for all four supersolvus heat treated disks were
comparable. When segregated S1 and S2 secondary y' sizes, as measured by the center of the fitted peaks,
are compared versus heat treatment, it can be seen these sizes did not strongly vary with quench rate or
relative stressrelief time, figure 16 and table 11. Stepwise multiple linear regression also could find no
statistically significant dependencies. So the cooling rate dependence observed for overall mean sizes of
figure 15 is principally dueto the relative quantities of S1 and S2 precipitates.

Mean sizes and histograms of feret diameter versus frequency for the tertiary y' did not strongly vary
with cooling rate between the supersolvus disks. Only aweak correlation (R? = 0.41) of decreasing size as
afunction of increasing cooling rate was identified. Rather, the bore specimens of all disks had a common
larger size than that of the rim specimens. This could be because the instantaneous cooling ratesin the
latter intervals of the quench process were similar for the bores of all disks, and similar for the rims of all
disks. The subsequent stress relief and aging heat treatments could then have coarsened the tertiary y' to
similar, near equilibrium sizes. However, it should be noted that the smallest tertiary y' size was measured
in the rim of the faster quenched disk given the short stressrelief heat treatment, W110.

The microstructures at the grain boundaries of these specimens are compared in figures 17 to 20.
Optical images of etched metall ographic sections showed the bore specimens consistently have more
undulated, serrated grain boundaries than the rim specimens, figure 3. TEM imaging of grain boundaries
in thin foils indicated the serrations were produced by enlarged secondary y' which protruded into the
grain boundary. This enlargement was greater for the bore specimens. This response has been observed
elsewhere (ref. 13), and could be attributed to enhanced diffusion of y' forming elements along the grain
boundary during the long time excursions near the solvus of the slower cooling bore specimens.

Subsolvus heat treated disks—The typical secondary and tertiary y' microstructures within the grains
of rim specimens from subsolvus heat treated disks are shown in figure 21. Visual inspection suggests
finer secondary y' size in the rims of faster quenched disks S010 and WO011 than for slower quenched,
WO000 and S001, disks, with similar area fractions. Measured sizes, area fractions, and shape parameters
are compared in tables 7 to 11, and histograms of size versus frequency are shown in figures 22 and 23.
Feret diameter of secondary y' could be considered normally distributed for all four cases, and only a
single population was obvious for each specimen, so the trends observed from averaged values
correspond well to the size histograms. Averaged secondary y' sizes were smaller for the faster quenched
disks, with similar standard deviations, figure 16. These sizes did not clearly vary with relative stress
relief time. It should be noted that more variations in secondary y' could be possible in the bores of
subsolvus hest treated disks, not evaluated in this study.

Tertiary y' size did not clearly vary with quench rate or stressrelief time in these subsolvus heat
treated rim specimens. However, the histograms of feret diameter were skewed towards large size for the
longer relative stress relief time, suggesting additional growth of some precipitates with longer time.
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The mean sizes of secondary y' for subsolvus disk rim specimens were similar to those of the S1
precipitates in supersolvus disks, figure 16 and table 11. The higher relative cooling rates encountered in
the fastest quenched subsolvus disks S010 and WO011 produced slightly smaller sizes. Tertiary y' sizes
were comparable for subsolvus and supersolvus disks.

The microstructures at the grain boundaries of these specimens are compared in figure 24. TEM
imaging of grain boundariesin thin foils indicated relatively flat, un-serrated grain boundaries. The
primary y' particles often pinned triple point intersections of grain boundaries, and were encircled by a
zone having only tertiary y' precipitates.

Summary and Conclusions

The microstructures of specimens from the bores and rims of supersolvus and subsolvus heat treated
MES disks were evaluated using optical and transmission el ectron microscopy. The findings can be
summarized as follows:

1. Meanand ALA grain sizes of bore and rim specimens from supersolvus heat treated disks were

comparable and well-controlled, with mean ASTM grain sizes of 6.5t0 7.5 and ALA grain sizes
of 2.3t0 4.0.

2. Mean and ALA grain sizes of rim specimens from subsolvus heat treated disks were also
comparable and well-controlled, with mean grain sizesof 11.9to 12.1 and ALA grain sizes of
7.3108.5.

3. Secondary y' precipitates in supersolvus heat treated disks could be separated into two
populations of smaller, more regular shaped S1 precipitates and larger, more distorted S2
precipitates. The size of the S1 and S2 precipitates did not clearly vary with cooling rate or stress
relief time. However, the relative proportion of smaller S1 precipitates increased with cooling
rate.

4. Tertiary y' precipitate size did not clearly vary between supersolvus heat treated disks, but was
dependent on disk location. Precipitate sizes in bore specimens were larger than those for rim
specimens. No significant size dependence with stress relief time was evident.

5. Secondary y' precipitate size was found to moderately decrease with increasing cooling rate for
specimens from the rims of subsolvus solution heat treated disks.

It can be concluded from this work that:

1. Thegrain size variationsin subsolvus as well as supersolvus heat treated ME3 can be controlled
well with respect to other powder metallurgy disk alloys, and better than typical cast and wrought
disk aloys.

2. Secondary y' precipitates in supersolvus heat treated superalloy disks can have bimodal size
distributions, probably due to different successive bursts of nucleation. Quantification of the
precipitates in these cases can be refined by size frequency analysis and peak fitting.

3. The effects of varying quench rate on secondary ' precipitate size can be more complicated than
monotonic size changes. Increasing quench rates apparently encouraged a higher frequency of
nucleation for S1 precipitates, and a lower frequency of nucleation for S2 precipitates. A full
understanding of this relationship would require application of ¥’ precipitate nucleation models
such asin reference 8.

4. The effects of varying quench rate on tertiary y' precipitate size appeared related to relative disk
location, and associated quench rate during the latter stages of the quench. Slower cooling bore
specimens had larger tertiary y' precipitate size. The effects of varying stressrelief time were
inconsequential over the range of these heat treatments.

5. Overdl, it can be concluded that such a detailed quantification of microstructure can be useful for
generation of processing, microstructure, and mechanical property relationships and models.
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ﬂ@ 0, A sk/g/ /
. & l

Minor Axis

Minor Axis Length

Aspect Ratio = =1 for circle, square, infinite for line
P Major Axis Length 9
: 2
Compactness = Per}';“& =47 (12.57) for circle, infinite for line
rea
Shape Factor = Eﬂ[_—Aﬁ:-a——z =1 for circle, 0.61 for equilateral triangle, 0.79 for square, 0.86 for pentagon
erimeter
FeretDiameter = \/‘lﬂfﬁ = diameter of circle with equal area
T

Figure 1.—Shape parameters calculated in quantification of y' precipitates.
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3 :l - .'7,, V :
50 pm NT4
(a) S100-bore

NN IR s
R o gt

N

R ¥ G

i

(d) H111-bore Rim

Figure 2.—Grain microstructures of bore (T1) and rim (NT4) specimens from
supersolvus heat treated disks: (a) S100, (b) S101, (¢c) W110, (d) H111.
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(b)SlOl

T ‘NT4“L;'50 l.tm

' 'NT4 50 pm

(d) H111

Figure 3.—Grain boundary serrations of disks. (a) S100, (b) S101, (c) W110, (d) HI11.
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Figure 4.—Grain microstructures of rim (NT4) specimens from subsolvus
heat treated disks. (a) W000, (b) S001, (c) S010, (d) WO11.
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- ©

(d) H111-Bore | ~ Rim
Figure 5.—General microstructures and typical minor phases of bore (T1) and rim (NT4)
specimens from supersolvus heat treated disks. (a) S100, (b) S101, (c) W110, (d) H111.
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100>ZA

Figure 6.—Energy dispersive X-ray spectrum and selected area diffraction pattern

of M;C carbides at grain boundaries, typical for all disks.

Cusor=

Vet=103

window 0.00- 40.950= 1683€ cn:

<110>ZA

Figure 7.—Energy dispersive x-ray spectrum and selected area diffraction pattern of
MC carbides within grains, typical for all disks.
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Figuréér.ﬁ:Siéileaéd area diffraction Egteimz{dﬂénergy dispersive
x-ray spectrum of Al,O; particle within grain, typical for all disks.
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<001>ZA

Cursors

Vel=292
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Window 0.J00- 40.950= 18764 on;
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..,_...._-.T-_.T‘A.‘r.‘....'. = ‘_-l..' —

15

2

Figure 9.—Selected area diffraction pattern and energy dispersive x-ray spectrum
of ZrO, particle within grain, typical for all disks.

Ma o i
Mo W3 o |
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Cr Mo ! W
Y ¢ Ni

v [

M;B,

1] 5
Cusors
Vet=200 window 0,J00- 40.950= 1486E cn;

<101>ZA

Figure 10.—Energy dispersive X-ray spectrum and selected area diffraction pattern
of M;B; particle at grain boundaries, typical for all disks.
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Figure 11.—General microstructures of rim (NT4) specimens from subsolvus heat treated disks.
(a) W000, (b) S001, (c) S010, (d) WOI11.
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(a) S100-bore  Rim

(d)HI1l-bore Rim
Figure 12.—y" microstructure within grains of bore (T1) and rim (NT4) specimens from
supersolvus heat treated disks. (a) S100, (b) S101, (c¢) W110, (d) H111.
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(a) S100-bore

(b) S101-bore

(c) W110-bore

(d) H111-bore
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Figure 13.—Histograms of secondary y' feret diameters of bore (T1) and rim (NT4)
specimens from disks. (a) S100, (b) S101, (c) W110, (d) H111.
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(a) S100-bore

(b) S101-bore

(c) W110-bore

(d) H111-bore
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Figure 14.—Histograms of tertiary y' feret diameters of bore (T1) and rim (NT4)
specimens from disks. (a) S100, (b) S101, (c) W110, (d) H111.
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Figure 15.—Mean secondary and tertiary y' feret diameters versus
relative cooling rate and stabilization time.
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Figure 16.—Peaks from histograms for separated populations of secondary and
tertiary y' feret diameters versus relative cooling rate and stabilization time.
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Figure 17.—Microstructure at grain boundaries of bore (T1) and
rim (NT4) specimens from disk S100.
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Figure 18.—Microstructure at grain boundaries of bore (T1) and
rim (NT4) specimens from disk S101.
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Figure 19.—Miicrostructure at grain boundaries of bore (T1) and
rim (NT4) specimens from disk W110.
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Figure 20.—Microstructure at grain boundaries of bore (T1) and
rim (NT4) specimens from disk HI111.
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Figure 21.—y' microstructure within grains of rim specimens from subsolvus
heat treated disks. (a) W000, (b) S001, (c) S010, (d) WO11.
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Figure 22.—Histograms of secondary y' feret diameters for rim specimens from
subsolvus heat treated disks. (a) W000, (b) S001, (¢) S010, (d) WO11.
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Figure 23.—Histograms of tertiary y' feret diameters for rim specimens from subsolvus
heat treated disks. (a) W000, (b) S001, (c¢) S010, (d) WO11.
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(d)
Figure 24.—Microstructure at grain boundaries for rim specimens of disks.
(a) W000, (b) S001, (c) S010, (d) WO11.
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